Pole assignability in polynomial rings, power series rings, and Prüfer domains
نویسندگان
چکیده
منابع مشابه
Semistar dimension of polynomial rings and Prufer-like domains
Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...
متن کاملCurves and coherent Prüfer rings
Usual definitions of Dedekind domain are not well suited for an algorithmic treatment. Indeed, the notion of Noetherian rings is subtle from a constructive point of view, and to be able to get prime ideals involve strong hypotheses. For instance, if k is a field, even given explicitely, there is in general no method to factorize polynomials in k[X]. The work [2] analyses the notion of Dedekind ...
متن کاملAnti-archimedean Rings and Power Series Rings
We define an integral domain D to be anti-Archimedean if ⋂∞ n=1 a nD 6= 0 for each 0 6= a ∈ D. For example, a valuation domain or SFT Prüfer domain is anti-Archimedean if and only if it has no height-one prime ideals. A number of constructions and stability results for anti-Archimedean domains are given. We show that D is anti-Archimedean ⇔ D[[X1, . . .
متن کاملsemistar dimension of polynomial rings and prufer-like domains
let $d$ be an integral domain and $star$ a semistar operation stable and of finite type on it. we define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong s-domains. as an application, we give new characterizations of $star$-quasi-pr"{u}fer domains and um$t$ domains in terms of dimension ine...
متن کاملStandard bases in mixed power series and polynomial rings over rings
In this paper we study standard bases for submodules of a mixed power series and polynomial ring RJt1, . . . , tmK[x1, . . . , xn] s respectively of their localization with respect to a t-local monomial ordering for a certain class of noetherian rings R. The main steps are to prove the existence of a division with remainder generalizing and combining the division theorems of Grauert–Hironaka an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90031-7